Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Using the environment to control quantum devices: A deeper understanding of how the environment impacts quantum behaviour is bringing quantum devices one step closer to widespread adoption

Abstract:
Singapore University of Technology and Design (SUTD) researchers have uncovered how the environment can impact highly sensitive quantum behaviours like localisation. Their findings, published in Chaos, could lead to future innovations in the design of superconducting materials and quantum devices, including super precise sensors.

Using the environment to control quantum devices: A deeper understanding of how the environment impacts quantum behaviour is bringing quantum devices one step closer to widespread adoption

Singapore | Posted on June 1st, 2021

Quantum technology, in particular quantum sensing, promises to measure and capture our world at levels of precision never before possible. Such precision has diverse applications, from speedier and more sensitive medical imaging to recording time on high-frequency market trades, and even the development of sensors that can determine whether the ground beneath us is solid rock or a natural oil-and-gas reservoir.

Yet for all its theoretical potential, one considerable practical challenge remains when producing quantum measuring devices: controlling how they respond to the environment. Real devices are extremely sensitive to noise, which at best reduces their level of precision and at worst leads to unacceptable levels of error. When it comes to crafting ultra-precise sensors, such noise could overwhelm any useful signals.

Understanding how quantum devices respond to noise would help researchers find new ways to protect them from noise, making novel measurement and sensing technologies more feasible. Beyond increasing their accuracy, researchers may even be able to give quantum devices new properties. "If you could tune the amount of noise that these devices experience, you can make them function very differently and get an even more interesting device," explained Associate Professor Dario Poletti from SUTD, who led the study.

For example, scientists have known for decades that disorder in a system can cause a phenomenon called localisation, where a system gets 'stuck' to its initial state. On the other hand, when the particles in a system interact with each other strongly, there is a possibility that they can become 'unstuck,' that is, delocalised.

To study this tug-of-war between disorder and interaction, Poletti and PhD student Xiansong Xu added a third variable: the environment. Beginning with a theoretical model known as the XXZ spin chain, the researchers showed that the environment can have contrasting effects on localisation, depending on the strength of both the disorder and interaction in the system.

Performing numerical computations on the model, the researchers found that putting the system in contact with a dissipative environment such as a bath of photons pushed it towards delocalisation and made it more mobile, fluid and uniform, like water.

Importantly, they also found that while both weakly and strongly interacting systems still showed signs of localisation, the types of localisation were surprisingly different: one grainier and stuck, like sand, and the other, more uniform while still stuck, like ice.

This theoretical discovery suggests that the properties of certain materials can be tuned through changes in the external environment. For example, researchers might be able to turn a material from an insulator into a conductor by shining light on it -- or turn the material from one kind of insulator into another, with applications that go beyond quantum technologies to materials science and nanoelectronics.

"There are already quantum devices out there, and we will likely see more and more of them," Poletti said. "Devices are never truly isolated from their environments, so we would like to better understand how they can work in conjunction with the environment."

"Now the quest is to dig deeper and look for different systems, or go towards real materials and see what else can happen there," he added. "This kind of research is done over many years. We're trying to build fundamental knowledge and tools so that eventually, industry can take over."

####

For more information, please click here

Contacts:
Jessica Sasayiah

65-649-94823

Copyright © Singapore University of Technology and Design (SUTD)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Verizon and Zurich Instruments join Q-NEXT national quantum science center August 6th, 2021

Mixing a cocktail of topology and magnetism for future electronics: Joining topological insulators with magnetic materials for energy-efficient electronics August 6th, 2021

Controlling chaos in liquid crystals, gaining precision in autonomous technologies August 6th, 2021

NIST抯 quantum crystal could be a new dark matter sensor Peer-Reviewed Publication August 6th, 2021

Breathing new life into fuel cells August 6th, 2021

Quantum Physics

NIST抯 quantum crystal could be a new dark matter sensor Peer-Reviewed Publication August 6th, 2021

Non-linear effects in coupled optical microcavities July 30th, 2021

Superconductivity in high-Tc cuprates: 慺rom maximal to minimal dissipation?- a new paradigm? July 30th, 2021

Possible Futures

Quantum computing enables unprecedented materials science simulations: Multi-institutional team provides a foundation for unraveling the mysteries of magnetic materials August 6th, 2021

Verizon and Zurich Instruments join Q-NEXT national quantum science center August 6th, 2021

Mixing a cocktail of topology and magnetism for future electronics: Joining topological insulators with magnetic materials for energy-efficient electronics August 6th, 2021

Controlling chaos in liquid crystals, gaining precision in autonomous technologies August 6th, 2021

Sensors

Controlling chaos in liquid crystals, gaining precision in autonomous technologies August 6th, 2021

Researchers find 'layer Hall effect' in a 2D topological Axion antiferromagnet: It is first experimental evidence of this type of quantum state and can one day help generate a magneto-electric effect July 30th, 2021

Unlocking efficient light-energy conversion with stable coordination nanosheets: Scientists design a high-performance, self-powered, UV photodetector using 2D nanosheets that show record photocurrent stability under air exposure July 16th, 2021

Repairs using light signals: FAU research group develops smart microparticle that identifies defective parts in electrical appliances July 16th, 2021

Nanoelectronics

Non-linear effects in coupled optical microcavities August 5th, 2021

Researchers tame silicon to interact with light for next-generation microelectronics June 11th, 2021

New tech builds ultralow-loss integrated photonic circuits April 16th, 2021

Energy transmission by gold nanoparticles coupled to DNA structures April 9th, 2021

Discoveries

A universal intercalation strategy for high-stable perovskite photovoltaics: Researchers at Kanazawa University demonstrate that the use of CsI intercalation technology greatly passivate defects, subsequently improve device performance. This technology may encourage a more widesp August 6th, 2021

Astonishing diversity: Semiconductor nanoparticles form numerous structures August 6th, 2021

Mixing a cocktail of topology and magnetism for future electronics: Joining topological insulators with magnetic materials for energy-efficient electronics August 6th, 2021

NIST抯 quantum crystal could be a new dark matter sensor Peer-Reviewed Publication August 6th, 2021

Announcements

Verizon and Zurich Instruments join Q-NEXT national quantum science center August 6th, 2021

Mixing a cocktail of topology and magnetism for future electronics: Joining topological insulators with magnetic materials for energy-efficient electronics August 6th, 2021

Controlling chaos in liquid crystals, gaining precision in autonomous technologies August 6th, 2021

NIST抯 quantum crystal could be a new dark matter sensor Peer-Reviewed Publication August 6th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

A universal intercalation strategy for high-stable perovskite photovoltaics: Researchers at Kanazawa University demonstrate that the use of CsI intercalation technology greatly passivate defects, subsequently improve device performance. This technology may encourage a more widesp August 6th, 2021

Astonishing diversity: Semiconductor nanoparticles form numerous structures August 6th, 2021

Quantum computing enables unprecedented materials science simulations: Multi-institutional team provides a foundation for unraveling the mysteries of magnetic materials August 6th, 2021

NIST抯 quantum crystal could be a new dark matter sensor Peer-Reviewed Publication August 6th, 2021

Tools

Optical tweezer technology tweaked to overcome dangers of heat June 25th, 2021

Atomic-scale tailoring of graphene approaches macroscopic world June 18th, 2021

A novel nitrogen-doped dual-emission carbon dots as an effective fluorescent probe for ratiometric detection dopamine June 1st, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

Quantum nanoscience

Researchers find 'layer Hall effect' in a 2D topological Axion antiferromagnet: It is first experimental evidence of this type of quantum state and can one day help generate a magneto-electric effect July 30th, 2021

Chaotic electrons heed 憀imit?in strange metals July 30th, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Princeton-led team discovers unexpected quantum behavior in kagome lattice:Experiments suggest evidence for novel patterns of electronic charge distribution in a kagome material whose handedness can be manipulated with a magnetic field June 18th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project









风韵多水的老熟妇_无码免费不卡AV手机在线观看_大黄网站