Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Phytoplankton disturbed by nanoparticles: Due to its antibacterial properties, nanosilver is used in a wide range of products from textiles to cosmetics; but nanosilver if present at high concentrations also disrupts the metabolism of algae that are essential for the aquatic food

This nanoparticle disrupts the metabolism of algae.

CREDIT
UNIGE/ Wei Liu
This nanoparticle disrupts the metabolism of algae. CREDIT UNIGE/ Wei Liu

Abstract:
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood. A research team from the University of Geneva (UNIGE), working in collaboration with the University of California at Santa Barbara, have investigated the effects of nanosilver, currently used in almost 450 products for its antibacterial properties, on the algae known as Poterioochromonas malhamensis. The results - published in the journal Scientific Reports - show that nanosilver and its derivative, ionic silver, disturb the alga's entire metabolism. Its membrane becomes more permeable, the cellular reactive oxygen species increases and photosynthesis is less effective. The Swiss-American team was able to demonstrate for the first time the metabolic perturbations induced by nanosilver following its uptake in the food vacuoles of freshwater algae, paving the way for early detection of the metabolic changes before they express themselves physiologically.

Phytoplankton disturbed by nanoparticles: Due to its antibacterial properties, nanosilver is used in a wide range of products from textiles to cosmetics; but nanosilver if present at high concentrations also disrupts the metabolism of algae that are essential for the aquatic food

Geneva, Switzerland | Posted on November 27th, 2020

The nanosilver is used for its antibacterial properties and is employed in textiles and cosmetics, inter alia. In addition, the agro-food, biomedical and biopharmaceutical industry is interested in it for developing drugs, devices and pesticides. 玈ince nanosilver is designed to destroy, repel or render harmless noxious organisms such as bacteria, scientists have realised that it might also be harmful to organisms that are crucial to our environment,?begins Vera Slaveykova from the Department F.A. Forel for Environmental and Aquatic Sciences in UNIGE's Faculty of Sciences. To assess the influence of nanotechnology products on phytoplankton and to evaluate the impacts on aquatic environment, the researcher team conducted a study on the alga Poterioochromonas malhamensis as a model phytoplankton species. 玊he phytoplankton are everywhere, in lakes and oceans," continues Professor Slaveykova. 獳s a whole, phytoplankton generate almost half of the oxygen we breathe. And they have a second essential role, since they are at the base of the food chain. If they accumulate nanoparticles, these will be integrated into the aquatic food chain?

Multiple disturbances

The study led by Professor Slaveykova shows that treating the algae with nanosilver disrupts the metabolism of the amino acids that are vital for producing cellular proteins, the nucleotide metabolism that is important for genes, and fatty and tricarboxylic acids making up the membranes, as well as the photosynthesis and photorespiration elements.

The study results suggest that the silver ions released by the silver nanoparticles are the main toxicity factor. 玊he nanosilver is internalised in the algal cells by the phagocytotic mechanism used to supply cells with organic matter,?continues Professor Slaveykova. The study is the first to demonstrate that nanoparticles can follow such internalisation path in a species of phytoplankton. 玊hese measurements were carried out in Geneva by Dr Liu using transmission electron microscopy. This entry mechanism is only known in Poterioochromonas malhamensis; it is still unknown if other phytoplankton species express it,?explains the Geneva researcher.

To finish demonstrating nanosilver's toxicity, the international research team highlighted the fact that metabolic disturbances induce physiological dysfunctions. Professor Slaveykova observed lipid peroxidation leading to membrane permeabilization, increased oxidative stress and less efficient photosynthesis - and, it follows, reduced oxygen production.

An Approach That Needs to Be Implemented

The study underlines the full potential of metabolomics geared towards the molecular basis of the disruptions observed. 獻t's a fundamental contribution to the field: although the metabolomics approaches are properly in place in medical and pharmaceutical sciences, it's not at all the case for environmental toxicology where phytoplankton metabolomics is still in its infancy. The metabolomics is, therefore, a technique that offers the possibility of early detection of changes induced by a toxin, upstream of more global effects such as the alga growth inhibition and their impact on oxygen production. As it's never easy to demonstrate the relationships between cause and effect in complex environment, it is now essential to use approaches like these.?/p>

####

For more information, please click here

Contacts:
Vera I. Slaveykova

41-223-790-335

@UNIGEnews

Copyright © University of Geneva

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Verizon and Zurich Instruments join Q-NEXT national quantum science center August 6th, 2021

Mixing a cocktail of topology and magnetism for future electronics: Joining topological insulators with magnetic materials for energy-efficient electronics August 6th, 2021

Controlling chaos in liquid crystals, gaining precision in autonomous technologies August 6th, 2021

NIST抯 quantum crystal could be a new dark matter sensor Peer-Reviewed Publication August 6th, 2021

Possible Futures

Quantum computing enables unprecedented materials science simulations: Multi-institutional team provides a foundation for unraveling the mysteries of magnetic materials August 6th, 2021

Verizon and Zurich Instruments join Q-NEXT national quantum science center August 6th, 2021

Mixing a cocktail of topology and magnetism for future electronics: Joining topological insulators with magnetic materials for energy-efficient electronics August 6th, 2021

Controlling chaos in liquid crystals, gaining precision in autonomous technologies August 6th, 2021

Discoveries

A universal intercalation strategy for high-stable perovskite photovoltaics: Researchers at Kanazawa University demonstrate that the use of CsI intercalation technology greatly passivate defects, subsequently improve device performance. This technology may encourage a more widesp August 6th, 2021

Astonishing diversity: Semiconductor nanoparticles form numerous structures August 6th, 2021

Mixing a cocktail of topology and magnetism for future electronics: Joining topological insulators with magnetic materials for energy-efficient electronics August 6th, 2021

NIST抯 quantum crystal could be a new dark matter sensor Peer-Reviewed Publication August 6th, 2021

Announcements

Verizon and Zurich Instruments join Q-NEXT national quantum science center August 6th, 2021

Mixing a cocktail of topology and magnetism for future electronics: Joining topological insulators with magnetic materials for energy-efficient electronics August 6th, 2021

Controlling chaos in liquid crystals, gaining precision in autonomous technologies August 6th, 2021

NIST抯 quantum crystal could be a new dark matter sensor Peer-Reviewed Publication August 6th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

A universal intercalation strategy for high-stable perovskite photovoltaics: Researchers at Kanazawa University demonstrate that the use of CsI intercalation technology greatly passivate defects, subsequently improve device performance. This technology may encourage a more widesp August 6th, 2021

Astonishing diversity: Semiconductor nanoparticles form numerous structures August 6th, 2021

Quantum computing enables unprecedented materials science simulations: Multi-institutional team provides a foundation for unraveling the mysteries of magnetic materials August 6th, 2021

NIST抯 quantum crystal could be a new dark matter sensor Peer-Reviewed Publication August 6th, 2021

Environment

Light-harvesting nanoparticle catalysts show promise in quest for renewable carbon-based fuels June 25th, 2021

Active platinum species: Catalytic high-temperature oxidations: Individual atom or metal cluster? June 16th, 2021

Wearable sensors that detect gas leaks April 19th, 2021

TPU scientists offer new plasmon energy-based method to remove CO2 from atmosphere March 19th, 2021

Safety-Nanoparticles/Risk management

No nanoparticle risks to humans found in field tests of spray sunscreens December 2nd, 2020

Study: Nanoparticles produced from burning coal result in damage to mice lungs, suggesting toxicity to humans February 5th, 2020

NIOSH requests data to help develop exposure limits for nanomaterials February 1st, 2020

Nanoparticles may have bigger impact on the environment than previously thought: Non-antibacterial nanoparticles can cause resistance in bacteria October 17th, 2019

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project









风韵多水的老熟妇_无码免费不卡AV手机在线观看_大黄网站